Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

نویسندگان

  • Azrul Azlan Hamzah
  • Jumril Yunas
  • Burhanuddin Yeop Majlis
  • Ibrahim Ahmad
چکیده

This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG) as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP) as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wafer-level MEMS packaging via thermally released metal-organic membranes

This paper reports on the design, implementation and characterization of wafer-level packaging technology for a wide range of microelectromechanical system (MEMS) devices. The encapsulation technique is based on thermal decomposition of a sacrificial polymer through a polymer overcoat to form a released thin-film organic membrane with scalable height on top of the active part of the MEMS. Hermi...

متن کامل

A Wafer Level Vacuum Encapsulated Capacitive Accelerometer Fabricated in an Unmodified Commercial MEMS Process

We present the design and fabrication of a single axis low noise accelerometer in an unmodified commercial MicroElectroMechanical Systems (MEMS) process. The new microfabrication process, MEMS Integrated Design for Inertial Sensors (MIDIS), introduced by Teledyne DALSA Inc. allows wafer level vacuum encapsulation at 10 milliTorr which provides a high Quality factor and reduces noise interferenc...

متن کامل

Stresa, Italy, 26-28 April 2006 PACKAGING OF RF MEMS SWITCHING FUNCTIONS ON ALUMINA SUBSTRATE

The expending development of wireless communication requires strong demands for components with improved capabilities. RF MEMS devices offer a variable alternative to conventional communication components because they consume less DC power, have lower losses, higher linearity and higher Q factor. However, the commercialization of RF MEMS devices is hindered by technological issues such as their...

متن کامل

Packaging of RF Mems Switching Functions on Alumina Substrate

The expending development of wireless communication requires strong demands for components with improved capabilities. RF MEMS devices offer a variable alternative to conventional communication components because they consume less DC power, have lower losses, higher linearity and higher Q factor. However, the commercialization of RF MEMS devices is hindered by technological issues such as their...

متن کامل

Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding

Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS) transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008